**The solution of a quadratic equation in the standard form**

*ax*^{2}+*bx*+*c*= 0, where*a*,*b*, and*c*are real numbers and*a*≠ 0, can be find using the quadratic formula given below.

**Let us work out a few examples.**

**Example 1:**

**Use quadratic formula to solve**

*x*^{2}- 2*x*- 35 = 0.**Solution:**

**Step 1:**

**Given equation is**

*x*^{2}- 2*x*- 35 = 0.**Here,**

*a*= 1,*b*= -2, and*c*= -35.**The quadratic formula is**

**Step 2:**

**Substitute the values of**

*a*,*b*, and*c*in the quadratic formula to find the value of*x*.**Step 3:**

**So, the solution set is {5, -7}.**

**Example 2:**

**Use quadratic formula to solve 4**

*x*^{2}+ 2*x*= 17.**Solution:**

**Step 1:**

**Given equation is 4**

*x*^{2}+ 2*x*= 17.**It can be written as 4**

*x*^{2}+ 2*x*- 17 = 0. The equation is in the form of*ax*^{2}+*bx*+*c*= 0, where*a*= 4,*b*= 2, and*c*= -17.**Step 2:**

**The quadratic formula is**

**Substitute the values of**

*a*,*b,*and*c*in the quadratic formula to find the value of*x*.**Step 3:**

**So, the solutions are 1.83 and -2.33.**

**Practice questions:**

**Solve the given quadratic equations using quadratic formula:**

**1. x**

^{2}– x – 12 = 0**2. 2x**

^{2}– 9x – 5 = 0**3. 6x**

^{2}+ x – 48 = 0**4. x**

^{2}– 49 = 0**5. x**

^{2}+ 3x – 18 = 0**Quadratic formula is a best method to solve any quadratic equations. Practice with more quadratic equations using quadratic formula to solve it.**

**Note: Calculator shows answer in decimals not in fraction.**

**Related Articles:**